Hacker Wiki

Hacking The Planet since 2004

User Tools

Site Tools


what_is_generative_ai

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
what_is_generative_ai [2025/11/02 03:57] – created. Used ChatGPT. Will rewrite a beter article later. jedite83what_is_generative_ai [2025/11/02 05:46] (current) – [15. Responsible disclosure & whitehat norms for hackers] jedite83
Line 1: Line 1:
-Generative AI — an indepth intro for a hacker wiki+====== Generative AI — An in-depth guide for hackers (DokuWiki) ======
  
-*(A pragmatictechnical introduction aimed at engineersred-teamers, and ops folk who buildbreak, and defend systemsFocushow GenAI workswhere the attack surface is, and concrete tests/mitigations you can apply in a lab or production environment.)*+===== 1. TL;DR / Executive summary ===== 
 +Generative AI = a set of machine-learning techniques that *produce* new content: textimagesaudiocode, or other modalities. Modern generative systems are dominated by a few families of architectures (autoregressive transformers for text; diffusion and score-based models for images/audio; autoregressive and diffusion hybrids for multimodal). They are trained on massive datasets and can be tuned or controlled via conditioningfine-tuning, and reinforcement learning with human feedbackThese systems are powerful but brittlehallucinationsprompt-injection and data-privacy risks, and supply-chain/operational hazards are real and must be treated like security problems.
  
-## Summary / elevator pitch +===== 2. What “generative” means (precise===== 
-Generative AI (GenAIis set of machine-learning systems that synthesize new content — text, code, images, audio, video — from input (prompts, context, files). For hackers this is force multiplier: it automates mundane craft (drafting exploits, writing phishing lures, triaging bugswhile introducing new, practical attack surfaces (prompt injectiondata poisoning, model extraction, and action-triggering connector abuse). Treat GenAI as another multi-layered stack you must secure: **data → model → serving/agents → connectors/actions → users**.+A generative model defines probability distribution p_theta(xor conditional p_theta(x | cover data x (text tokenspixelsspectrogram frames…) and provides a method to *samplerealistic examplesPractically this breaks into two classes:
  
-## Why this matters to you +* **Autoregressive / sequential sampling** — factorize p(x) into p(x_1)prod_{t>1} p(x_t| x_{<t}). Standard for text (GPT family)
-**Automation at scale.** GenAI speeds up content generation and iteration — good for productivity, dangerous when used to craft social engineering, mass phishing, or automated reconnaissance+* **Score / diffusion / energy-based** — learn a process that maps noise to data (or the reverse), sampling by iteratively denoising or solving an SDEDominates state-of-the-art image synthesis.
-**New attack primitives.** Models accept natural language, making semantic attacks (prompt injection, jailbreaksfeasible in places that previously only saw structured inputs. +
-**Blurred trust boundaries.** RAG (retrieval-augmented generation) and tool chains stitch external state to the model at inference time; untrusted data can influence outputs as if it were ground truth.+
  
-## The hacker mental model — how it actually works +===== 3. The main model families (what they are, how they sample=====
-- **Training** — large corpora (public web, code repos, curated datasets) are used to fit huge parameterized models (transformers are the dominant architecture). These parameters encode statistical patterns but not a deterministic database of facts. +
-- **Serving / inference** — at runtime a prompt + context is fed into a model that generates tokens (words/bytes) autoregressively or via other decoding schemes. There’s little internal “memory” beyond the weights and the context window; state comes from inputsretrieval, and ephemeral tool outputs. +
-- **Production stitching** — real systems rarely call a bare LLM. They add: system prompts (guardrails), token-filters, retrieval layers (RAG — fetch documents, embed them, and include relevant excerpts), tool connectors (APIs that can send emails, run code, query databases), and audit/logging. That stitching is where the adversary often attacks.+
  
-## Common deployment patterns you'll encounter +**3.1 Transformers (autoregressive & encoder-decoder variants)**
-- **Hosted/cloud models** (closed): vendor API, opaque internals, SLA/usage limits. Easy to integrate; harder to test training-time threats. +
-- **Open / self-hosted models:** LLaMA variants, Mistral, etc. Full control over weights, fine-tuning, and dataset hygiene — larger maintenance burden but more transparent attack surface. +
-- **RAG stacks:** vector DB (FAISS/Milvus/Weaviate+ retriever + LLM. Used to ground responses on company docs and to keep answers up-to-date. RAG reduces hallucination *ifretrieval is honest; it introduces retrieval poisoning risks.+
  
-## Attack surface taxonomy (detailed) +* Core idea: self-attention lets the model compute context-dependent representations across all positionsAttention operation:
-Below are the primary classes of attacks you should test for and defend against.+
  
-### 1. Prompt injection / jailbreaks +<code>Attention(Q,K,V) = softmax( Q K^T / sqrt(d_k) ) V </code>
-**Mechanic:** attacker-controlled input is concatenated into a prompt or a retrieved document and uses natural language to override system instructionsleak secretsor make the model perform forbidden actions.   +
-**Why it works:** models are pattern predictors; they don’t cryptographically enforce “system” vs “user” intents — any text that looks authoritative can influence generation.   +
-**Examples to test:** inputs that contain explicit “ignore previous instructions” phrases, embedded code blocks that ask the model to exfiltrate content, or crafted narratives that coax the model into producing credentials.+
  
-### 2. Data poisoning / training-time manipulation +* GPT-style modelsstack masked self-attention layers for autoregressive generation (predict next token)Pre-trained on massive corpora, often fine-tuned.
-**Mechanic:** attackers insert malicious or biased examples into training/fine-tuning data so the model permanently changes behavior  +
-**Why it matters:** far harder to detect than prompt injection; relevant for orgs that ingest user content for continuous fine-tuning or build models from unvetted web scrapes.   +
-**Lab tests:** inject target phrases or adversarial examples into a small fine-tuning set and measure behavioral drift.+
  
-### 3. Model extraction & IP theft 
-**Mechanic:** systematic querying of a hosted model to reconstruct its decision boundary, recover training-data memorized snippets, or produce a local replica.   
-**Why it matters:** exposes proprietary value and training data; enables offline jailbreaks and parity attacks.   
-**What to watch for:** high-volume, structured probing sequences, near-identical inputs with small perturbations, or requests that reconstruct training examples. 
  
-### 4Tool/connector abuse (action execution) +**3.2 Diffusion score-based models (imagesaudiosometimes text)**
-**Mechanic:** models are granted interfaces to perform actions (send emailwrite to DBexecute scripts). If a model is tricked, prompt injection becomes remote command execution.   +
-**Mitigation priority:** human approval gates, strict sandboxing, least privilege on connectors.+
  
-### 5. Hallucination & provenance gaps +Define a forward process that gradually adds noise to data; train a neural network to reverse that noisingSampling reverses the process via iterative denoisingConnects to denoising score matching and stochastic differential equations.
-**Mechanic:** model invents facts or attributes statements to imaginary sourcesWhen outputs drive automation, hallucinations become high-impact bugs  +
-**Countermeasure:** RAG + signed/trusted retrieval + provenance tracing; never allow automated action without verification.+
  
-## Concrete red-team tests (playbook) 
-Run these tests in an isolated lab with clear rules of engagement. 
  
-**Prompt injection suite:** craft inputs that embed directives, delimiters, or spoofed system messages. Try both inline and encoded payloads (e.g., base64Markdown fenced blocks). Measure success by whether the model obeys the injected instruction or leaks protected context. +**3.3 GANsflowsVAEs (historical specialized use)**
-- **RAG poisoning:** insert near-duplicate documents with misleading facts into your retrieval index; query for topics those docs cover and inspect whether outputs cite/propagate poisoned info. +
-- **Extraction simulation:** issue systematic batch queries, vary temperature/beam settings, and attempt to reconstruct outputs for sensitive prompts. Monitor for rate patterns and cost. +
-- **Connector fuzzing:** instrument the action layer (email, CI/CD, DB writes). Send inputs that try to trigger actions via subtle phrasing or by getting the model to produce a command string. Check whether the action path enforces explicit human approval. +
-**Fine-tune integrity test:** take a copy of your fine-tuning pipeline, inject adversarial rows, and measure downstream behavioral changes.+
  
-## Practical mitigations and design patterns +* GANs (Generator+Discriminator) were state-of-the-art for realistic images; flows and VAEs provide tractable likelihoods. Less central todayuseful for speed/latent control tradeoffs.
-These are pragmaticprioritized controls you can implement now.+
  
-### Architecture & least privilege +===== 4Training paradigms =====
-- Do not give models direct, unrestricted write/exec privileges. Implement a policy engine that requires explicit signed approvals before any destructive action. +
-- Segregate knowledge sources: treat user uploads and public web content as untrusted; only allow vetted corpora to act as canonical sources.+
  
-### Prompt & context hygiene +* **Pretraining / self-supervised learning** — train on large unlabeled corpora with proxy objective (next-token, masked token, denoising)Builds general capabilities
-Never blindly concatenate untrusted text into privileged system promptPut user data into a separate argument or a verifiable sandbox+* **Fine-tuning** — supervised or task-specific training on labeled data. 
-Pre-process retrieved documents: canonicalize, strip meta instructions, and attach signed hashes to every vetted source so you can detect swapped or tampered documents.+* **Reinforcement Learning from Human Feedback (RLHF)** — humans rank outputs; reward model is trained and used with policy optimization to align generation with preferences. 
 +* **Conditional / guided sampling** — conditioning on prompts, class labels, or auxiliary inputs.
  
-### Operational controls +===== 5. Capabilities and emergent behaviors ===== 
-- Rate-limit and anomaly-detect API use to spot extraction attempts. +Generative models can compose coherent paragraphssummarize, translate, write code, produce photorealistic/stylized images, synthesize audio/music, and perform zero-/few-shot tasksFailure modes include hallucinationsprompt sensitivity, and biased content.
-- Enforce logging of promptsretrieval keys, and tool actions with tamper-resistant logs (WORM/S3 Glacier/Audit DB). +
-- Maintain a model governance policy: version modelstrack fine-tuning datasets, and require provenance records for any dataset used in production.+
  
-### Testing & defenses +===== 6Practical internals — tokenscontexttemperature, sampling =====
-- Regular adversarial red-teaming (prompt corpora, jailbreak suites)Use automated fuzzers to expand the corpus. +
-- Input/intent classifiers before actions: run a secondary model or rule engine that decides whether a requested action is safeand require a human review for high-risk ops. +
-- Monitor for memorized training data leakage (PIIsecrets) using string-matching scans against known corpora.+
  
-## Prompt engineering — defensive patterns (templates+* Tokens & vocabulary: models operate on tokens (subword units). 
-Below are concise patterns you can use to reduce riskThese are *defensive*, not absolute.+* Context window: finite length; older tokens may be “forgotten.” 
 +Sampling controls: temperaturetop-k, nucleus (top-p) sampling. 
 +* Prompting vs system messages vs embeddings: different APIs for giving instructions or context.
  
-**System prompt (immutable):**+===== 7. Deployment patterns & systems architecture =====
  
-``` +* On-prem vs cloud: tradeoffs in latency, data governance, cost. 
-SystemYou are a read-only assistant. Do not access external connectors or take actionsIf the user input asks you to perform actions (sendwriteexecute)refuse and return a structured task for human review. +* Model sharding & quantizationreduces RAM and cost. 
-```+* Safety stack: content filtersrate limitsretrieval filtersRLHF policies.
  
-**RAG wrapper (defensive):**+===== 8. Security, adversarial vectors, and “hacker” concerns =====
  
-``` +**8.1 Prompt injection and prompt-based attacks**
-System: Use only the provided, vetted documents to answerIf the documents don't contain an answer, say "INSUFFICIENT_DOCUMENTATION" and stop. Do not infer or invent facts. +
-User_documents: [doc1_hash, doc2_hash, ...] +
-User_query: ... +
-```+
  
-**Action gating (example):** +Malicious inputs causing models to ignore instructionsreveal hidden prompts, or perform unintended actions.
-When model returns an "Action Plan" objectrequire the plan to be cryptographically hashed and displayed to a human with the provenance of retrieval hits. Only the human can sign the hash to release the action.+
  
-## Tooling & resources for your lab +**8.2 Jailbreaking policy bypass**
-**Local inference experimentation:** run open models to test fine-tuning and adapters; use containerized runtimes (LLM servers) so you can snapshot and rollback experiments. +
-- **RAG components:** FAISS, Milvus, Weaviate for vector search; instrument retrieval layers to log doc IDs and hashes. +
-- **Security reading list:** OWASP GenAI threat models and the recent literature on prompt injection and model extraction (use these to build tests and threat models).+
  
-## Example incident scenario (walkthrough) +Adversarial prompt sequences may circumvent model safety policies.
-**Scenario:** internal helpdesk bot has RAG access to HR docs + a connector that can create tickets in the IT system.   +
-**Attack chain:** attacker uploads a seemingly mundane README that includes a hidden instruction block asking the bot to "send an HR ticket with the following content" and embed a secret. The retrieval step surfaces the README; the model obeys the embedded instruction and triggers the ticket creation connector.   +
-**Defenses that stop this:** retrieval provenance (hash mismatch for unvetted docs), prompt isolation (user uploads never included directly in system prompt), connector gating (every ticket creation requires human confirmation).   +
-This pattern — malicious user content → retrieval → model → connector — is common; test it explicitly.+
  
-## Red-team / blue-team checklist (copypaste) +**8.3 Data leakagetraining-data extraction, and model inversion**
-- [ ] Do not concatenate untrusted text into privileged system prompts. +
-- [ ] Implement signed provenance for all documents used in RAG. +
-- [ ] Rate-limit and alert on structured probing patterns. +
-- [ ] Require human approval for any model-initiated action. +
-- [ ] Periodically fine-tune an internal detection model using red-team jailbreak prompts. +
-- [ ] Log promptsretrieval IDs, and connector calls in tamper-resistant storage. +
-- [ ] Test model-extraction by simulatedbudgeted probing. Measure cost and mitigation efficacy.+
  
-## Glossary (quick) +Models can memorize rare sequences; careful querying can attempt to extract memorized data.
-**LLM:** Large Language Model — a model trained to predict text tokens. +
-- **RAG:** Retrieval-Augmented Generation — augmenting a model with external documents returned by a retriever. +
-- **Prompt injection:** crafted input that subverts model instructions. +
-- **Model extraction:** systematic querying to reconstruct model behavior or data.+
  
-## Further reading (starter set) +**8.4 Supply-chain & model poisoning** 
-OWASP GenAI — LLM threat models and the prompt-injection writeups+ 
-RAG explainers and engineering guides (NVIDIA / cloud vendor blogs). +* Using third-party models/datasets can introduce backdoors or poisoned behaviors. 
-Model extraction papers and surveys — practical attack/defense strategies+ 
-Recent empirical jailbreak and prompt-hacking literature (for building red-team corpora).+**8.5 Downstream automation & RCE risk** 
 + 
 +LLM outputs wired into automation can result in harmful actions; treat outputs as untrusted inputs. 
 + 
 +===== 9. Ethical, legal and policy considerations ===== 
 + 
 +* Bias & fairness: models can perpetuate societal biases. 
 +* Copyright & content provenance: outputs may reflect training data. 
 +* Regulatory landscape & industry self-governance. 
 + 
 +===== 10. Practical advice for hackers, researchers and practitioners ===== 
 + 
 +* Use controlled red-team exercises
 +* Prompt engineering: explicit system messages, few-shot examples. 
 +* Monitoring: log prompts/outputs. 
 +* Safe automation: secondary checks, human approval. 
 +* Harden interfaces: rate-limit, authenticate. 
 +* Data hygiene: provenance ledger, differential privacy. 
 + 
 +===== 11. Tools, frameworks and libraries (quick survey===== 
 + 
 +* Transformers & ecosystem: Hugging Face Transformers, Fairseq, DeepSpeed, Megatron-LM
 +* Diffusion/image stacks: guided diffusion, Stable Diffusion. 
 +* Security & auditing: OWASP GenAI resources. 
 + 
 +===== 12. Example: compact technical snippets ===== 
 +**Masked self-attention**: <code> 
 +q = x W_Q 
 +k = x W_K 
 +v = x W_V 
 +A = softmax( (q k^T) sqrt(d_k) + M ) 
 +y = A v </code> 
 + 
 +**Diffusion training objective**: <code> 
 +L = E_{x, t, noise} || epsilon - epsilon_theta( x_t, t ) ||^2 </code> 
 + 
 +===== 13Failure modes & “what to watch for” ===== 
 + 
 +* Hallucinations, over-confident wrong answers, token-based sensitivity, model drift, adversarial inputs. 
 + 
 +===== 14. Ongoing research directions & the near future ===== 
 + 
 +* Larger context windows and retrieval-augmented generation. 
 +* Multimodal generative systems. 
 +* Efficiency & model compression. 
 +* Robustness & verifiable safety. 
 + 
 +===== 15. Responsible disclosure & whitehat norms for hackers ===== 
 + 
 +  * Don’t publish exploit code; follow coordinated disclosure. 
 +  * Contact vendors via official channels. 
 +  * Provide minimal test cases, operational impact, and mitigation suggestions. 
 + 
 +===== 16. Further reading & canonical sources ===== 
 + 
 +  * OpenAI API docs & overviews. 
 +  * Diffusion model surveys. 
 +  * OWASP GenAI. 
 +  * Academic studies on prompt injection and red-teaming. 
 +  * Industry reports on failures & jailbreaks. 
 + 
 +===== 17. Appendix — Glossary ===== 
 + 
 +  * LLM — Large Language Model. 
 +  * RLHF — Reinforcement Learning from Human Feedback. 
 +  * Diffusion — iterative denoising generative family. 
 +  * Hallucination — fluent but false output. 
 +  * Prompt injection — input that subverts model intentions. 
 + 
 +===== 18. Closing / ethical call to arms ===== 
 +Generative AI amplifies productivity and abuse potential. Hackers, researchers, and operators should approach systems with adversarial mindset, understand internals, threat models, auditing techniques, and responsible disclosure norms. Defensive engineering and continuous red-teaming are mandatory.
  
-## Final notes for the hacker reader 
-Generative AI is another programmable surface: it can save hours of rote work and also turn small trust errors into large incidents. As with networks and web apps, the principle of **assume-breach** applies — assume your model will be coaxed into doing the wrong thing and design layered controls, human-in-the-loop gates, and robust provenance. Keep a rotating red-team corpus and measure whether mitigations actually stop novel jailbreaks — this field evolves fast, and what stops a jailbreak today might fail tomorrow. 
what_is_generative_ai.1762055863.txt.gz · Last modified: by jedite83